

Impact of Smart Technologies on Construction Projects: Improvements in Project Performance

Jasmine Ngo, Bon-Gang Hwang, Jeremy Teo 14 October 2021

Contents

- Introduction
- Background
- Research approach
- Data presentation
- Data analysis and discussion
- Conclusion
- Q&A

Introduction

Smart Technologies

- Key technologies associated with 4IR include Cyber-Physical System (CPS), Internet-of-Things (IoT), Big Data (BD), Additive Manufacturing (AM), Augmented Reality (AR), Virtual Reality (VR), robotics, Autonomous Vehicles (AV), laser scanning and blockchain
- Can self-organise and self-execute work tasks

• Enable the integration, digitalisation, and automation of entire value chains

Research Motivation

• Potential to improve performance of industries

 Lack of awareness of the benefits increases the perceived risk of technology adoption, resulting in resistance towards adoption

Research Objectives

This study aims to investigate:

- i. the smart technologies perceived to be most useful in construction projects;
- ii. the improvements in the performance of construction projects that can be achieved from the implementation of smart technologies; and
- iii. the correlations among the smart technologies and the perceived improvements to project performances

Research Significance

 Better understanding of feasibility of adopting smart technologies and improvements in project performance

 Serve as foundation to develop a data-driven roadmap to drive the adoption of smart technologies in the construction industry

Background

Applications in Construction Projects

Real-time monitoring and control on site and along the supply chain Integrated data platform for decision-making and optimised planning Real-time communication

Research Approach

Research Approach

Literature review

 Establish foundation for the study and development of the survey questionnaire

Expert panel discussion and interviews

 Validate the survey questionnaire prior to distribution

Distribution of survey questionnaire

- Administered to 600 target respondents
- 73 valid responses received

Data analysis and postsurvey interviews

- Analyse collected data
- Validate the findings from the survey questionnaire

Data presentation

Profile of Respondents

Data analysis and discussion

Top Smart Technologies that Improve Construction Projects Performance

- Autonomous vehicles and robotics
 - Automate dangerous and routine works
 - Improve productivity and quality
 - Increased consistency of works
 © Copyright National University of Singapore. All Rights Reserved.

- Additive manufacturing
 - Typically conducted off-site in controlled environment
 - Improves productivity and quality

Productivity = output/ onsite manpower

<mark>오</mark>	ک ہ	Ģ	
	:.0 	<u>ר</u> ע	
Ш	Ē	60	

- Cyber-physical system and Internet-of-Things
 - Improve collaboration among stakeholders

Top Improvements in Construction Projects

- Improved productivity
- Improved quality
- Improved collaboration

Rank of Benefits of Smart Technologies in Construction Projects

	AV and robotics		AM		CPS and IoT		Big data		Laser scanning		AR and VR		Blockchain		Overall
	RT	RB	RT	RB	RT	RB	RT	RB	RT	RB	RT	RB	RT	RB	
Improve productivity	1	4	1	2	1	1	1	4	1	2	1	6	1	7	1
Improve quality	2	2	2	1	3	5	3	6	2	3	2	4	3	7	2
Improve collaboration	7	6	7	7	2	1	2	2	3	4	3	5	2	3	3
Cost saving	3	1	5	4	4	2	4	3	5	5	5	7	4	5	4
Time saving	4	1	3	2	5	2	5	5	4	4	6	6	5	7	5
Improve safety	4	1	4	2	6	6	6	4	6	5	4	3	6	7	6
Reduce labour	6	1	6	2	7	3	7	5	7	7	7	3	6	6	7
Improve sustainability	8	1	8	2	8	4	8	5	8	7	8	3	8	6	8
Overall	1		2		3		4		5		6		7		

*RT = rank by technology, RB = rank by benefit

Rank Correlation between Smart Technologies

	AV and Robotics	AM	CPS and	BD	Laser scanning	AR and VR	Blockchain	Total		
AV and Robotics	1.000	0.922*	0.635	0.635	0.719*	0.719*	0.620	0.755*		
AM		1.000	0.571	0.571	0.738*	0.690	0.551	0.690		
CPS and IoT			1.000	1.000*	0.952*	0.905*	0.994*	0.976*		
BD				1.000	0.952*	0.905*	0.994*	0.976*		
Laser scanning					1.000	0.905*	0.946*	0.976*		
AR and VR						1.000	0.874*	0.929*		
Blockchain							1.000	0.970*		
Total								1.000		
*Correlation is significant at the 0.05 level (2-tailed)										

Rank Correlation between Perceived Benefits

	Improve productivity	Improve quality	Improve collaboration	Cost saving	Time saving	Improve safety	Reduce labour	Improve sustainability	Total	
Improve productivity	1.000	0.436	0.127	0.450	0.688	0.109	0.147	0.055	0.582	
Improve quality		1.000	-0.821*	0.180	0.721	0.893*	0.595	0.607	0.679	
Improve collaboration			1.000	0.126	-0.324	-0.857*	-0.541	-0.607	-0.357	
Cost saving				1.000	0.782*	0.198	0.545	0.450	0.829*	
Time saving					1.000	0.613	0.682	0.613	0.955*	
Improve safety						1.000	0.703	0.750	0.679	
Reduce labour							1.000	0.991*	0.775*	
Improve sustainability								1.000	0.714	
Total									1.000	
*Correlation is significant at the 0.05 level (2-tailed)										

Conclusion

Summary of Findings

- Autonomous vehicles and robotics Additive manufacturing
- Cyber-physical system and Internet-of-Things

Improved productivity

• Improved quality

Improved collaboration

THANK YOU

Bibliography

- Akanmu, A., Anumba, C.J., 2015. Cyber-physical systems integration of building information models and the physical construction. Engineering, Construction and Architectural Management 22, 516–535. https://doi.org/10.1108/ECAM-07-2014-0097
- Bilal, M., Oyedele, L.O., Qadir, J., Munir, K., Ajayi, S.O., Akinade, O.O., Owolabi, H.A., Alaka, H.A., Pasha, M., 2016. Big Data in the construction industry: A review of present status, opportunities, and future trends. Advanced Engineering Informatics 30, 500–521. https://doi.org/10.1016/j.aei.2016.07.001
- Bosché, F., Ahmed, M., Turkan, Y., Haas, C.T., Haas, R., 2015. The value of integrating Scan-to-BIM and Scan-vs-BIM techniques for construction monitoring using laser scanning and BIM: The case of cylindrical MEP components. Automation in Construction 49, 201–213. https://doi.org/10.1016/j.autcon.2014.05.014
- Chen, Q., García de Soto, B., Adey, B.T., 2018. Construction automation: Research areas, industry concerns and suggestions for advancement. Automation in Construction 94, 22– 38.
- Chi, H.-L., Kang, S.-C., Wang, X., 2013. Research trends and opportunities of augmented reality applications in architecture, engineering, and construction. Automation in Construction 33, 116–122. https://doi.org/10.1016/j.autcon.2012.12.017
- Dallasega, P., Rauch, E., Linder, C., 2018. Industry 4.0 as an enabler of proximity for construction supply chains: A systematic literature review. Computers in Industry 99, 205–225. https://doi.org/10.1016/j.compind.2018.03.039
- Golparvar-Fard, M., Peña-Mora, F., Savarese, S., 2009. D4AR A 4-Dimensional augmented reality model for automating construction progress monitoring data collection, processing and communication. Journal of Information Technology in Construction 14, 129–153.
- Jia, M., Komeily, A., Wang, Y., Srinivasan, R.S., 2019. Adopting Internet of Things for the development of smart buildings: A review of enabling technologies and applications. Automation in Construction 101, 111–126. https://doi.org/10.1016/j.autcon.2019.01.023
- Li, X., Yi, W., Chi, H.-L., Wang, X., Chan, A.P.C., 2018. A critical review of virtual and augmented reality (VR/AR) applications in construction safety. Automation in Construction 86, 150–162. https://doi.org/10.1016/j.autcon.2017.11.003
- Merschbrock, C., Munkvold, B.E., 2015. Effective digital collaboration in the construction industry A case study of BIM deployment in a hospital construction project. Computers in Industry 73, 1–7. https://doi.org/10.1016/j.compind.2015.07.003
- Oesterreich, T.D., Teuteberg, F., 2016. Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. Computers in Industry 83, 121–139. https://doi.org/10.1016/j.compind.2016.09.006
- Riaz, Z., Arslan, M., Kiani, A.K., Azhar, S., 2014. CoSMoS: A BIM and wireless sensor based integrated solution for worker safety in confined spaces. Automation in Construction 45, 96–106. <u>https://doi.org/10.1016/j.autcon.2014.05.010</u>
- Turk, Ž., Klinc, R., 2017. Potentials of Blockchain Technology for Construction Management. Procedia Engineering 196, 638–645. https://doi.org/10.1016/j.proeng.2017.08.052
- Wang, Y., Wang, X., Truijens, M., Hou, L., Zhou, Y., 2014. Integrating Augmented Reality with Building Information Modeling: Onsite construction process controlling for liquefied natural gas industry. Automation in Construction 40, 96–105. https://doi.org/10.1016/j.autcon.2013.12.003
- Zhong, R.Y., Peng, Y., Xue, F., Fang, J., Zou, W., Luo, H., Thomas Ng, S., Lu, W., Shen, G.Q.P., Huang, G.Q., 2017. Prefabricated construction enabled by the Internet-of-Things. Automation in Construction 76, 59–70. https://doi.org/10.1016/j.autcon.2017.01.006