

The Joint Conference CIB W78 - LDAC 2021 11-15 October 2021, Luxembourg

Neural Network-based Predictive Control (NN-MPC) System for Energy Optimization in Sports Facilities: A Case Study

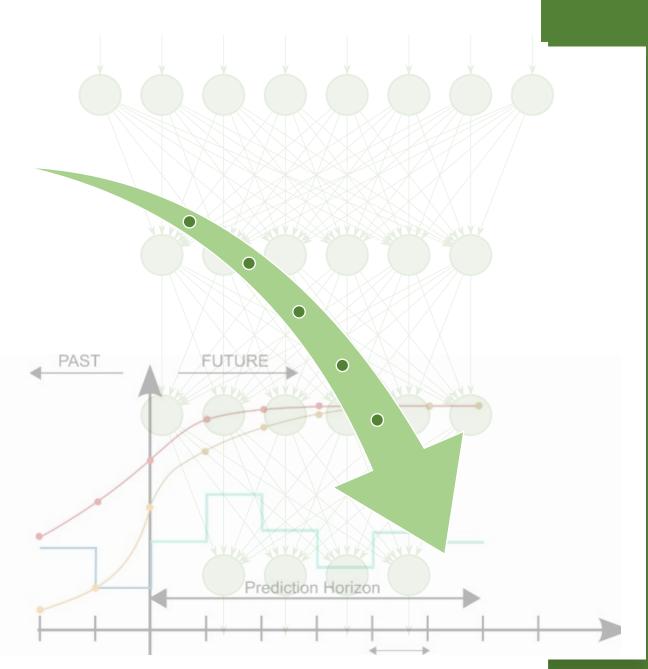
Authors

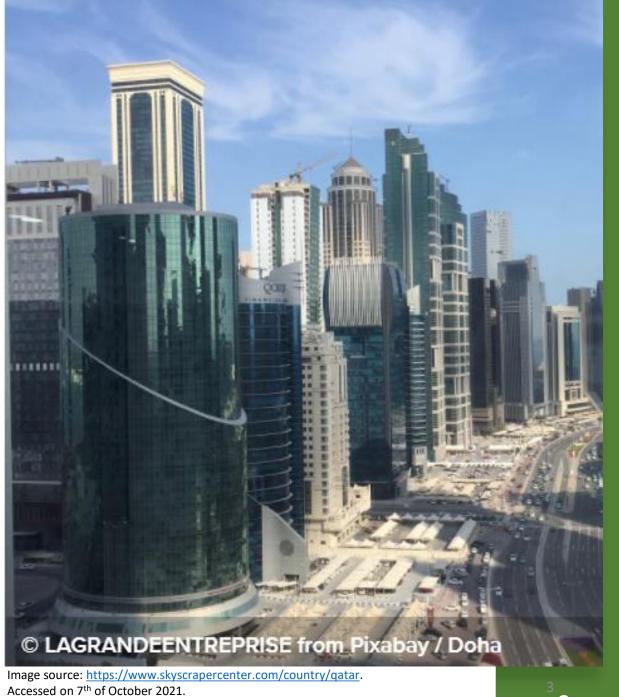
Elnour, M.¹, MohammedSherif, H.¹, Fadli, F.¹, Meskin, N.¹, Ahmad, A.M.¹, Rezgui, Y.², Petri, I.², Hodorog, A.²

¹ College of Engineering - Qatar University, Doha, Qatar
 ² BRE Institute of Sustainable Engineering, Cardiff University, Cardiff, UK

Presenter: Mariam Elnour

Affiliation: Research Assistant with the Department of Architecture & Urban Design, College of Engineering - Qatar University


Date: Thursday, 14th of October 2021


Content

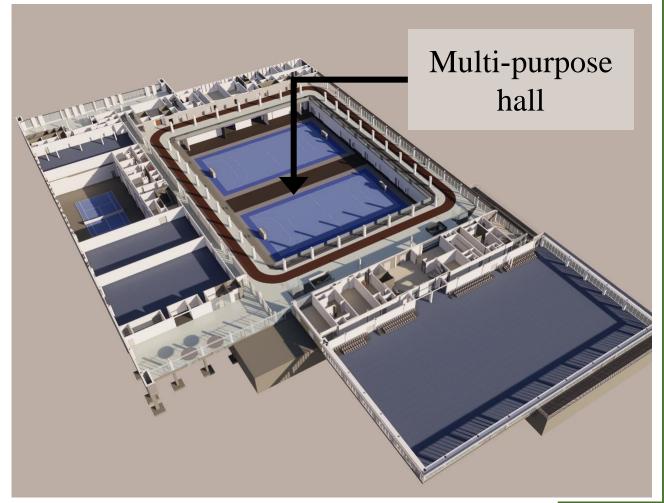
- Introduction
- Objective
- Description of the case study
- The proposed neural network-based model predictive control (NN-based MPC) approach
- Results and discussion
- Conclusion and Future work

Introduction

- The buildings sector accounts for¹:
 - Over one-third of global final energy consumption
 - Nearly 40% of total direct and indirect CO2 emissions
- Energy demand from buildings continues to rise, driven by:
 - Improved access to energy in developing countries
 - Greater ownership and use of energyconsuming devices
 - Rapid growth in global buildings floor area

Introduction

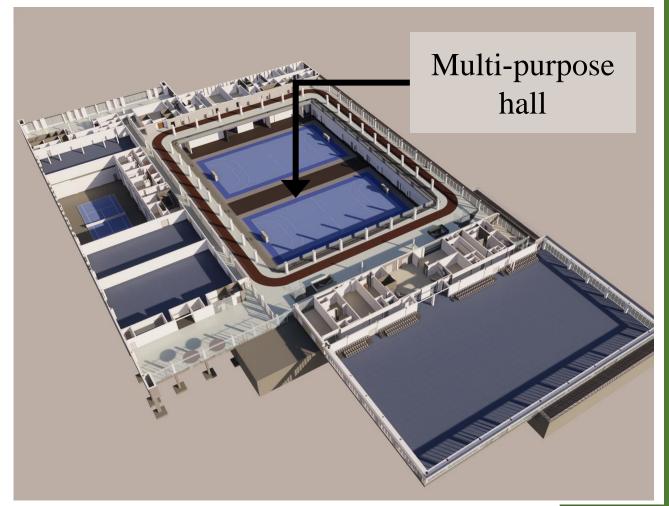
- The great dependence on fossil fuels is a key factor
- Mitigating the climate change is a key challenge of the 21st century²
- The world urgently needs to use energy efficiently while embracing clean energy sources


Image source: <u>https://rmi.org/financing-the-transition-from-coal-to-clean-energy/</u> Accessed on 7th of October 2021

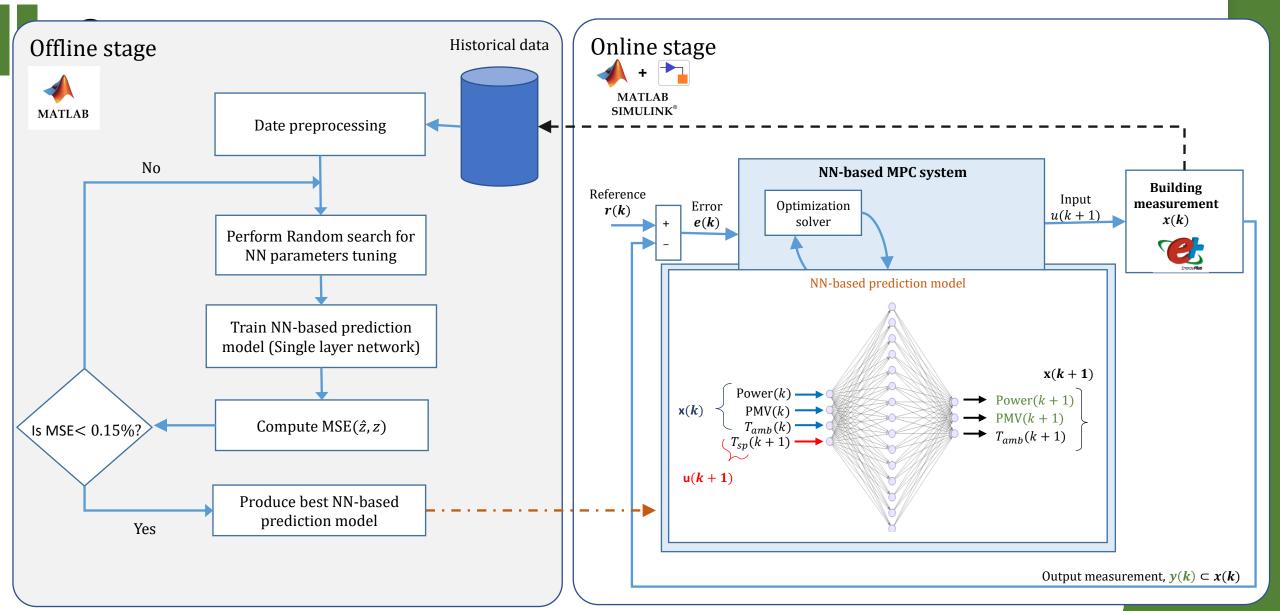
Objective

- The theory of model predictive control (MPC) is combined with neural networks (NNs) for temperature setpoint selection to achieve energy and performance optimization of sports facilities
- The proposed approach represents a temperature setpoint optimization system that accounts for the current and future system transitions in the decision-making process

Description of the Case Study


- The sports and events complex of Qatar University operates from 8 am to 3 pm
- The case study in this work is demonstrated on the multipurpose hall, the largest conditioned space in the complex
- The hall extends from the ground floor to the roof with a total floor area of about 7,500 m²

The image is a courtesy of the Capital Project Department of Qatar University.


Description of the Case Study

- It is controlled at a temperature of 22°C during occupancy period
- The sports mode of the multipurpose hall accommodates about 1200 people
- The building information model of the complex was used to develop the Energy Plus simulation model using Design Builder software

The image is a courtesy of the Capital Project Department of Qatar University.

The Proposed NN-based MPC Approach

The Proposed NN-based MPC Approach

• Theory of Model-Predictive Control (MPC):

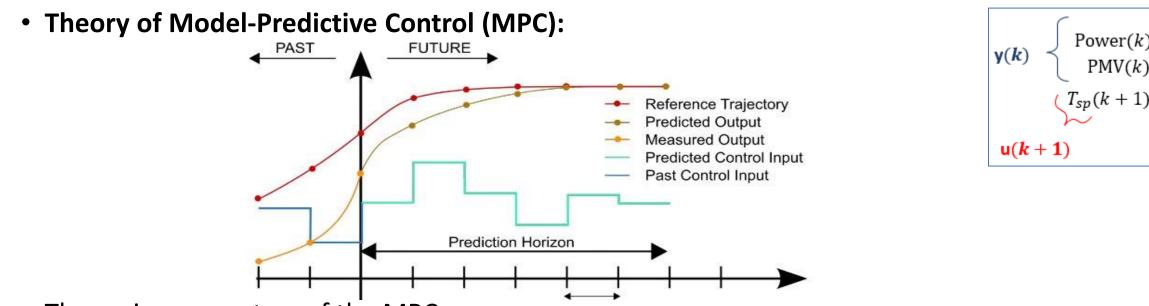
 The MPC system consists of an **optimizer** and a **prediction model** of the building operation to decide the temperature setpoint given a cost function, J:

$$J = \sum_{j=1}^{n_y} \sum_{i=1}^{n_p} \frac{w_j}{s_j} e_j^2(k+i|k) + \sum_{i=0}^{n_{p-1}} w_{\Delta u} \Delta u^2(k+i|k)$$

$$\mathbf{y}(\mathbf{k}) \begin{cases} Power(k) \\ PMV(k) \\ T_{sp}(k+1) \\ \mathbf{u}(\mathbf{k}+1) \end{cases}$$

States at time k	$\ensuremath{\textbf{Outputs}}$ at time k	$\label{eq:response} \textbf{Reference} \text{ at time } k$	Input at time k	Error at time \mathbf{k}
x(k)	<i>y</i> (<i>k</i>)	r(k)	<i>u</i> (<i>k</i>)	e(k) = y(k) - r(k)

 \odot The main parameters of the MPC are:

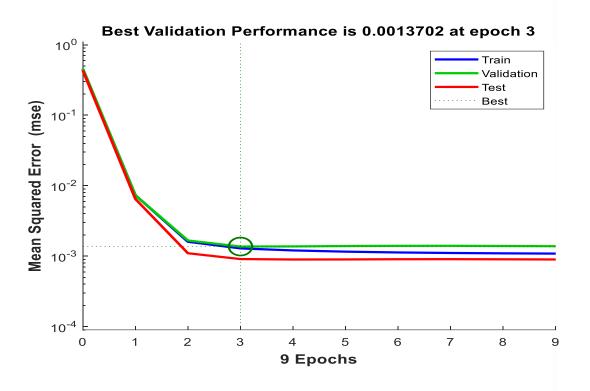

• <u>prediction horizon</u>, n_p determines the extent the controller investigates the future when optimizing u(k)

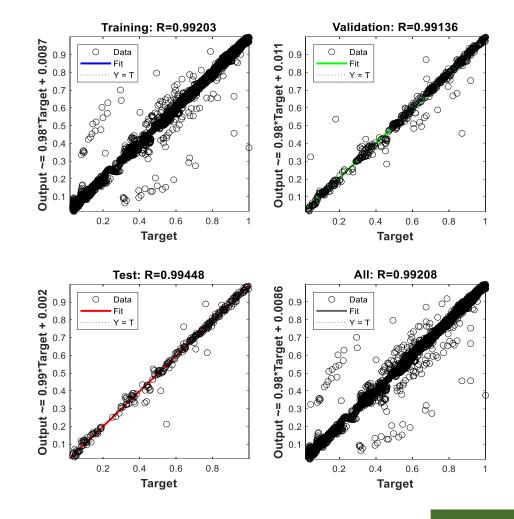
• <u>control horizon</u>, $n_c \in [1, n_p]$, represents the number of control actions u(k) to be optimized at every step

• <u>output weights,</u> w determine the relative importance of the variables to the optimization objective

• <u>Scale parameters</u>, *s* to normalize the error signals to avoid optimization failure or sub-optimality due to output variables' diverse magnitudes

The Proposed NN-based MPC Approach




• The main parameters of the MPC are:

- prediction horizon, n_p determines the extent the controller investigates the future when optimizing u(k)
- <u>control horizon</u>, $n_c \in [1, n_p]$, represents the number of control actions u(k) to be optimized at every step
- <u>output weights,</u> w determine the relative importance of the variables to the optimization objective
- <u>Scale parameters</u>, *s* to normalize the error signals to avoid optimization failure or sub-optimality due to output variables' diverse magnitudes

Results and Discussion

• Training of the NN-based prediction model:

Results and Discussion

• The performance of the NN-based MPC system:

Energy reduction	Average PMV	n _p	n _c	<i>w</i> ₁	<i>w</i> ₂	Computation time per simulation step (sec)
33.45%	1.26	2	1	6.05	12.05	0.19
9.94%	1.20	3	2	6.05	0.05	0.22
19.08%	1.24	4	3	6.05	8.05	0.28

Power(k)

PMV(k

 $T_{sp}(k+1)$

 $\mathbf{y}(\mathbf{k})$

u(k+1)

 $\circ n_p$ is the prediction horizon $\circ n_c$ is the control horizon $\circ w_1$ is for PMV variable $\circ w_2$ is for Energy variable

Comparison: With MPC Without MPC PMV 1.5 10 11 12 13 9 14 15 3e5 Energy (J) ----- Without MPC With MPC 2e5 1e5 12 13 10 11 14 8 9 15 28 **Femperature** (Degree C) Temperature setpoint ——— Space air temperature 26 24 22 10 11 12 13 14 15 9 Time (hour of the day)

Conclusion

- Effective utilization of a neural network-based MPC system for setpoint selection to achieve energy and performance optimization of sports facilities using simulation tools
- MPC systems allow integrated dynamic optimization that accounts for the future system behavior in the decision-making process
- A neural network was used for the system prediction element of the MPC system since it is unpractical and difficult to obtain explicit models for complex buildings such as sports facilities
- Neural networks are advantageous for their ability to represent complex interdependencies with high accuracy

Conclusion

- The proposed approach was able to achieve a total energy savings of about 34%
 Considerations about the prediction model performance, tuning of the MPC settings, and optimization sub-optimality or failure are essential during both design and implementation phases
- The MPC system for setpoint optimization complements the existing management and automation system of the facility, thus can be easily integrated

Future Work

We plan to work on improvements of the proposed system by:

- Including additional controlling variables such as occupancy rate, air ventilation rate, etc.
- Expanding the objective to include factors related to the safety and health of users
- * We plan to validate the proposed framework using practical experiments

Acknowledgement

This research/publication was made possible by a National Priority Research Program NPRP award [NPRP12S-0222-190128] from the Qatar National Research Fund (a member of The Qatar Foundation).

Thank you for your kind attention

Dr. Fodil Fadli Department of Architecture and Urban Planning, College of Engineering, Qatar University

Email: <u>f.fadli@qu.edu.qa</u>

More information about the **SportE.3Q project** can be found in <u>https://www.sporte3q.com/</u>